Comprehensive identification of "druggable" protein ligand binding sites.
نویسندگان
چکیده
We have developed a new computational algorithm for de novo identification of protein-ligand binding pockets and performed a large-scale validation of the algorithm on two systematically collected datasets from all crystallographic structures in the Protein Data Bank (PDB). This algorithm, called DrugSite, takes a three-dimensional protein structure as input and returns the location, volume and shape of the putative small molecule binding sites by using a physical potential and without any knowledge about a potential ligand molecule. We validated this method using 17,126 binding sites from complexes and apo-structures from the PDB. Out of 5,616 binding sites from protein-ligand complexes, 98.8% were identified by predicted pockets. In proteins having known binding sites, 80.9% were predicted by the largest predicted pocket and 92.7% by the first two. The average ratio of predicted contact area to the total surface area of the protein was 4.7% for the predicted pockets. In only 1.2% of the cases, no "pocket density" was found at the ligand location. Further, 98.6% of 11,510 binding sites collected from apo-structures were predicted. The algorithm is accurate and fast enough to predict protein-ligand binding sites of uncharacterized protein structures, suggest new allosteric druggable pockets, evaluate druggability of protein-protein interfaces and prioritize molecular targets by druggability. Furthermore, the known and the predicted binding pockets for the proteome of a particular organism can be clustered into a "pocketome", that can be used for rapid evaluation of possible binding partners of a given chemical compound.
منابع مشابه
Characterization of protein-ligand interaction sites using experimental and computational methods.
The ability to identify the sites of a protein that can bind with high affinity to small, drug-like compounds has been an important goal in drug design. Accurate prediction of druggable sites and the identification of small compounds binding in those sites have provided the input for fragment-based combinatorial approaches that allow for a more thorough exploration of the chemical space, and th...
متن کاملSiteSeeker: an Algorithm to Identify Ligand Binding Sites in Proteins on a Genome Scale
In the post-genome area, identification and characterization of ligand binding sites of proteins play increasing roles for drug discovery. Ligand binding site annotation may be used to identify and validate drug targets, to prioritize and optimize drug lead, to rationalize small molecule screening and docking, to guide medical chemistry effort to design druggable molecules, and to evaluate ADME...
متن کاملpMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins
Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails ...
متن کاملStructural conservation of druggable hot spots in protein-protein interfaces.
Despite the growing number of examples of small-molecule inhibitors that disrupt protein-protein interactions (PPIs), the origin of druggability of such targets is poorly understood. To identify druggable sites in protein-protein interfaces we combine computational solvent mapping, which explores the protein surface using a variety of small "probe" molecules, with a conformer generator to accou...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome informatics. International Conference on Genome Informatics
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2004